scholarly journals The Role of Indian Ocean Sea Surface Temperature in Forcing East African Rainfall Anomalies during December–January 1997/98

1999 ◽  
Vol 12 (12) ◽  
pp. 3497-3504 ◽  
Author(s):  
M. Latif ◽  
D. Dommenget ◽  
M. Dima ◽  
A. Grötzner
Author(s):  
Emily Black

Knowledge of the processes that control East African rainfall is essential for the development of seasonal forecasting systems, which may mitigate the effects of flood and drought. This study uses observational data to unravel the relationship between the Indian Ocean Dipole (IOD), the El Niño Southern Oscillation (ENSO) and rainy autumns in East Africa. Analysis of sea–surface temperature data shows that strong East African rainfall is associated with warming in the Pacific and Western Indian Oceans and cooling in the Eastern Indian Ocean. The resemblance of this pattern to that which develops during IOD events implies a link between the IOD and strong East African rainfall. Further investigation suggests that the observed teleconnection between East African rainfall and ENSO is a manifestation of a link between ENSO and the IOD.


2014 ◽  
Vol 11 (3) ◽  
pp. 3111-3136 ◽  
Author(s):  
C. Funk ◽  
A. Hoell ◽  
S. Shukla ◽  
I. Bladé ◽  
B. Liebmann ◽  
...  

Abstract. In southern Ethiopia, Eastern Kenya, and southern Somalia, poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts in that region to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we show that the two dominant modes of East African boreal spring rainfall variability are tied, respectively, to western-central Pacific and central Indian Ocean SST. Variations in these rainfall modes can be predicted using two previously defined SST indices – the West Pacific Gradient (WPG) and Central Indian Ocean index (CIO), with the WPG and CIO being used, respectively, to predict the first and second rainfall modes. These simple indices can be used in concert with more sophisticated coupled modeling systems and land surface data assimilations to help inform early warning and guide climate outlooks.


Author(s):  
Amirul Islam ◽  
Andy Chan ◽  
Matthew Ashfold ◽  
Chel Gee Ooi ◽  
Majid Azari

Maritime Continent (MC) positions in between Asian and Australian summer monsoons zone. Its complex topography and shallow seas around it is a major challenge for the climate researchers to model and understand it. Monsoon in this area is affected by inter-scale ocean-atmospheric interactions like El-Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Madden-Julian Oscillation. Monsoon rainfall in MC (especially in Indonesia and Malaysia) profoundly exhibits its variability dependency on ocean-atmospheric phenomena in this region. This monsoon shift often introduces to dreadful events like biomass burning (BB) in Southeast Asia (SEA) which sometimes leads to severe trans-boundary haze pollution. In this study, the episode of BB in 2015 of SEA is highlighted and discussed. Observational satellite datasets are tested by performing simulations with numerical weather prediction (NWP) model using WRF-ARW (Advanced research WRF). Observed and model datasets are compared to study the sea surface temperature (SST) and precipitation (rainfall) anomalies influenced by ENSO, IOD and MJO. Correlations have been recognised which explains the delayed rainfall of regular monsoon in MC due to the influence of ENSO, IOD and MJO during 2015 BB episode, eventually leading to intensification of fire and severe haze.


2014 ◽  
Vol 43 (3-4) ◽  
pp. 1011-1023 ◽  
Author(s):  
Mohamed S. Siam ◽  
Guiling Wang ◽  
Marie-Estelle Demory ◽  
Elfatih A. B. Eltahir

2020 ◽  
Vol 33 (19) ◽  
pp. 8209-8223
Author(s):  
Bradfield Lyon

AbstractIn much of East Africa, climatological rainfall follows a bimodal distribution characterized by the long rains (March–May) and short rains (October–December). Most CMIP5 coupled models fail to properly simulate this annual cycle, typically reversing the amplitudes of the short and long rains relative to observations. This study investigates how CMIP5 climatological sea surface temperature (SST) biases contribute to simulation errors in the annual cycle of East African rainfall. Monthly biases in CMIP5 climatological SSTs (50°S–50°N) are first identified in historical runs (1979–2005) from 31 models and examined for consistency. An atmospheric general circulation model (AGCM) is then forced with observed SSTs (1979–2005) generating a set of control runs and observed SSTs plus the monthly, multimodel mean SST biases generating a set of “bias” runs for the same period. The control runs generally capture the observed annual cycle of East African rainfall while the bias runs capture prominent CMIP5 annual cycle biases, including too little (much) precipitation during the long rains (short rains) and a 1-month lag in the peak of the long rains relative to observations. Diagnostics reveal the annual cycle biases are associated with seasonally varying north–south- and east–west-oriented SST bias patterns in Indian Ocean and regional-scale atmospheric circulation and stability changes, the latter primarily associated with changes in low-level moist static energy. Overall, the results indicate that CMIP5 climatological SST biases are the primary driver of the improper simulation of the annual cycle of East African rainfall. Some implications for climate change projections are discussed.


2011 ◽  
Vol 39 (9-10) ◽  
pp. 2307-2328 ◽  
Author(s):  
A. Park Williams ◽  
Chris Funk ◽  
Joel Michaelsen ◽  
Sara A. Rauscher ◽  
Iain Robertson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document